Half Equations

I) a) Calculate the oxidation state of each underlined element in the following:

$\underline{\mathrm{SO}_{2}}$	SO_{3}	$\underline{\mathrm{SO}_{4}{ }^{2-}}$	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$\underline{\mathrm{CrO}}$		
3	$\underline{\mathrm{MnO}_{4}{ }^{2-}}$	$\underline{\mathrm{MnO}_{4}}$				
$\mathrm{FeCl}_{4}{ }^{2-}$	$\mathrm{Cu}_{2} \mathrm{O}$	$\underline{\mathrm{CuO}}$	$\underline{\mathrm{NO}}_{3}{ }^{-}$	$\underline{\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}}$	$\underline{\mathrm{CH}_{4} \mathrm{O}_{2}}$	$\underline{\mathrm{CH}_{4} \mathrm{O}}$

b) name the IONS in part (a)
2) Write a half equation for each of the following conversions in acidic solution.
a) $\mathrm{H}_{2} \rightleftharpoons \mathrm{H}^{+}$
b) $\mathrm{Br}^{-} \rightleftharpoons \mathrm{Br}_{2}$
c) $\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \mathrm{SO}_{2}$
d) $\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}$
e) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightleftharpoons \mathrm{Cr}^{3+}$
f) $\mathrm{MnO}_{4}^{-} \rightleftharpoons \mathrm{Mn}^{2+}$
g) $\mathrm{CH}_{4} \mathrm{O} \rightleftharpoons \mathrm{CH}_{2} \mathrm{O}_{2}$
h) $\mathrm{H}_{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}$
i) $\mathrm{VO}_{2}{ }^{+} \rightleftharpoons \mathrm{VO}^{2+}$
j) $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-} \rightleftharpoons \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
k) $\mathrm{H}_{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{O}_{2}$
I) $\mathrm{NO}_{3}{ }^{-} \rightleftharpoons \mathrm{NO}_{2}$
3) Using your answers to Q2, combine them to create overall equations for the following reactions:
(all in acidic conditions)
a) Oxidation of Fe^{2+} by MnO_{4}^{-}
b) Oxidation of Fe^{2+} by O_{2}
c) Oxidation of $\mathrm{H}_{2} \mathrm{O}_{2}$ by MnO_{4}^{-}
d) Reduction of Br_{2} by Fe^{2+}
e) Reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ by $\mathrm{CH}_{4} \mathrm{O}$
4) Chlorine reacts differently with sodium hydroxide depending on temperature.

At high temp it forms NaCl and NaClO_{3} but at low temperatures it forms NaCl and NaOCl .
By considering the oxidation states involved, create balanced equations for both reactions.
5) State whether the following are redox reactions or not, by showing the oxidation numbers of each of the elements involved. If the reaction is a redox reaction state which species have been oxidized and reduced during the reaction.
a) $\mathrm{Zn}+2 \mathrm{HCl} \quad \rightarrow \quad \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
b) $\mathrm{CuO}+2 \mathrm{HCl} \quad \rightarrow \quad \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad \mathrm{HCl}+\mathrm{HClO}$
6) A solution of the $\mathrm{NO}_{2}{ }^{-}$ion can be reduced to the ion, $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{2-}$. This ion is a strong reducing agent which reacts with MnO_{4}^{-}in acidic conditions to form Mn^{2+} ions and a second product that could be $\mathrm{NO}, \mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{N}_{2} \mathrm{O}$ or NO_{2}.
a) State the oxidation number of nitrogen in $\mathrm{NO}, \mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{2-}$.
b) 8 moles of MnO_{4}^{-}react with 5 moles of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{2-}$.
i) Use this information to identify the second product of the reaction.
ii) Write a balanced equation for the reaction of 8 moles of MnO_{4} react with 5 moles of $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{2}$.
7) Use oxidation states to create half equations for each of these reactions and use them to help balance the following reactions all in acidic solution
a) $\mathrm{Zn}+\mathrm{NO}_{3^{-}}+\mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}++\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{UO}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow \mathrm{UO}_{2}{ }^{2+}+\mathrm{Cr}^{3+}$
c) $\mathrm{Mn}^{2+}+\mathrm{BiO}_{3}^{-} \rightarrow \mathrm{MnO}_{4}^{-}+\mathrm{Bi}^{3+}$
d) $\mathrm{Cl}+\mathrm{Sn}+\mathrm{NO}_{3^{-}} \rightarrow \mathrm{SnCl}_{6}{ }^{2-}+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$
e) $\mathrm{MnO}_{4}+\mathrm{l} \rightarrow \mathrm{Mn}^{2+}+\mathrm{I}_{2}$
f) $\mathrm{MnO}_{2}+\mathrm{Cl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}$
g) $\mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{MnO}_{4^{-}}+\mathrm{MnO}_{2}$
h) $\mathrm{VO}_{2}{ }^{+}+\mathrm{Zn} \rightarrow \mathrm{VO}^{2+}+\mathrm{Zn}$
i) $\mathrm{MnO}_{4}^{-}+\mathrm{Ni} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Ni}^{2+}$
j) $\mathrm{CrO}_{4}{ }^{2-}+\mathrm{Cr}^{2+} \rightarrow \mathrm{Cr}^{3+}$

