Half Equations

1)	a) Calculate th	ne oxidation s	tate of each	underlined	element ir	n the followin	g:
----	---	----------------	----------------	--------------	------------	------------	----------------	----

<u>S</u> O ₂	<u>S</u> O ₃	<u>S</u> O ₄ ²⁻	\underline{Cr}_2O_3	<u>Cr</u> O ₃	<u>Mn</u> O ₄ ²⁻	<u>Mn</u> O₄
<u>Fe</u> Cl ₄ ²⁻	<u>Cu</u> ₂O	<u>Cu</u> O	<u>N</u> O ₃ ⁻	$\underline{C}_{2}O_{4}^{2}$	<u>C</u> H ₄ O ₂	<u>C</u> H₄O

b) name the IONS in part (a)

2) Write a half equation for each of the following conversions in acidic solution. [10]

a) $H_2 \rightleftharpoons H^+$	b) Br ⁻ = Br ₂	c) $SO_4^{2-} \Longrightarrow SO_2$
d) $SO_4^{2-} \longrightarrow H_2S$	e) $\operatorname{Cr}_2O_7^{2-} \longrightarrow \operatorname{Cr}^{3+}$	f) MnO₄⁻ ──Mn²⁺
g) CH₄O ⊂ CH₂O₂	h) $H_2O_2 \implies H_2O$	i) VO ₂ ⁺ = VO ²⁺
j) $S_4O_6^{2-} = S_2O_3^{2-}$	k) $H_2O_2 = O_2$	I) NO3 ⁻ - NO2

- 3) Using your answers to Q2, combine them to create overall equations for the following reactions: (all in acidic conditions) [10]
- a) Oxidation of Fe^{2+} by MnO_4^-
- b) Oxidation of Fe^{2+} by O_2
- c) Oxidation of H_2O_2 by MnO_4^-
- d) Reduction of Br_2 by Fe^{2+}
- e) Reduction of $Cr_2O_7^{2-}$ by CH_4O
- 4) Chlorine reacts differently with sodium hydroxide depending on temperature. [5] At high temp it forms NaCl and NaClO₃ but at low temperatures it forms NaCl and NaOCl. By considering the oxidation states involved, create balanced equations for both reactions.

- 5) State whether the following are redox reactions or not, by showing the oxidation numbers of each of the elements involved. If the reaction is a redox reaction state which species have been oxidized and reduced during the reaction.
 - a) Zn + 2HCI \rightarrow $ZnCl_2 + H_2$
 - \rightarrow CuO + 2HCI $CuCl_2 + H_2O$ b) $MnCl_2 + Cl_2 + H_2O$ $MnO_2 + 4HCI$ \rightarrow c)
 - HCI + HCIO \rightarrow d)

[14]

[6]

[14]

- 6) A solution of the NO₂⁻ ion can be reduced to the ion, $N_2O_2^{2^2}$. This ion is a strong reducing agent which reacts with MnO₄⁻ in acidic conditions to form Mn²⁺ ions and a second product that could be NO, NO₃⁻, NO₂⁻, N₂O or NO₂.
- a) State the oxidation number of nitrogen in NO, NO_3^- , NO_2^- , N_2O , NO_2 and $N_2O_2^{-2-}$. [6]
- b) 8 moles of MnO_4^{-1} react with 5 moles of $N_2O_2^{-2}$.
 - i) Use this information to identify the second product of the reaction. [1] ii) Write a balanced equation for the reaction of 8 moles of MnO_4^- react with 5 moles of $N_2O_2^{2^2}$. [4]
 - 7) Use oxidation states to create half equations for each of these reactions and use them to help balance the following reactions all in acidic solution [20]
 - a) Zn + NO₃- + H⁺ \rightarrow Zn²⁺ + NH₄⁺ + H₂O
 - b) $UO_{2^+} + Cr_2O_{7^{2-}} \rightarrow UO_{2^{2+}} + Cr_{3^+}$
 - c) Mn^{2+} + $BiO_{3^-} \rightarrow MnO_{4^-}$ + Bi^{3+}
 - d) $Cl^{-} + Sn + NO_{3}^{-} \rightarrow SnCl_{6}^{2-} + NO_{2}(g) + H_{2}O$
 - e) MnO_4 + I \rightarrow Mn^{2+} + I_2
 - f) $MnO_2 + Cl \rightarrow MnCl_2 + Cl_2$
 - g) $MnO_{4^2} \rightarrow MnO_{4^-} + MnO_2$
 - h) $VO_{2^{+}} + Zn \rightarrow VO^{2^{+}} + Zn$
 - i) $MnO_{4} + Ni \rightarrow Mn^{2+} + Ni^{2+}$
 - j) $CrO_{4^{2-}} + Cr^{2+} \rightarrow Cr^{3+}$